Manipulating Biogeochemical Processes in an Advective Flow Field: In Situ Stabilization of Metals and Radionuclides by Co-Precipitation in Calcite

R.W. Smith, Univ. Idaho Y. Fujita, Idaho Natnl. Engin. & Environ. Lab F.G. Ferris, Univ. Toronto

Research sponsored by US Department of Energy, Environmental Management Science Program: Project Number 87016

Contact Information

Investigators:

Principal Investigator

Robert W. Smith
Dept. of Bio. & Ag. Engineering
University of Idaho-Idaho Falls
1776 Science Center Drive
Idaho Falls, ID 83402
(208) 282-7954
smithbob@uidaho.edu

Co-Principal Investigators

Yoshiko Fujita Biotechnology Dept. Idaho National Engineering and Environmental Laboratory PO Box 1625 MS-2107 Idaho Falls, ID 83415 (208) 526-1242 fujiy@inel.gov F. Grant Ferris
Dept. of Geology
University of Toronto
22 Russell Street
Toronto, Ontario
Canada M5S 3B1
(416) 978-0526
ferris@geology.utotonto.ca

Other Senior Contributors:

Donna M. Cosgrove
Dept. of Bio. & Ag. Engineering
University of Idaho-Idaho Falls
1776 Science Center Drive
Idaho Falls, ID 83402
(208) 282-7914
cosgrove@if.uidaho.edu

F. "Rick" S. Colwell Biotechnology Dept. Idaho National Engineering and Environmental Laboratory PO Box 1625 MS-2203 Idaho Falls, ID 83415 (208) 526-0097

Coupled Processes and *In Situ*Stabilization

- In situ stabilization results from a transient perturbation of the biogeochemical environment
 - Application of treatment
 - Remobilization of contaminants from less stable form
 - Sequestration in more stable form
- Stabilization must persist for decades to centuries after active treatment ends
 - Biogeochemical environment will reverts to pretreatment background conditions
 - Coupling between the rates of local biogeochemical processes and the global fluxes

Proposed Stabilization Strategy

 Manipulate the kinetics of calcite precipitation in an aquifer in order to increase the rate of coprecipitation of divalent metals (eg. ⁹⁰Sr⁺²⁺, ⁶⁰Co²⁺, Pb²⁺, Cd²⁺) from the aqueous phase.

$$(1-\square)Ca^{2+} + \square Me^{2+} + 2HCO_3^- \rightarrow Ca_{(1-\square)}Me_\square CO_3 + CO_2 + H_2O$$

 Co-precipitation of metals in calcite at arid western sites is compatible with the long term subsurface biogeochemistry

Divalent Metals and Radionuclides are Common at DOE sites

Riley and Zachara 1992

90Strontium Contamination

INEEL groundwater, perched water (INTEC)

- Up to 84 pCi L⁻¹ in a 1.6 km² groundwater plume
- Up to 320,000 pCi L⁻¹ in perched water

Hanford soils, groundwater (100N)

- Est in-ground inventory of 75 to 89 Ci
- Groundwater levels up to 6000 pCi L⁻¹

EPA Regulatory Limits for ⁹⁰Sr in drinking water: 8 pCi L⁻¹

Contaminant inventories are largely associated with the solid media, not the water

In Situ Stabilization Concept

 $2NH_4^+ + HCO_3^- + OH^-$

Results to Date (1)

University of Idaho

 Demonstrated in laboratory and field the linkage between urea hydrolysis and calcite precipitation.

Results to Date (2)

 Observed that Sr is incorporated into calcite precipitated by urea hydrolyzers, with higher distribution coefficient than in abiotic systems

University of Idaho

Snake River Plain Model Aquifer System

	mg L ⁻¹		mg L ⁻¹
Ca ²⁺	70.1	Na [†]	25.8
Mg ²⁺	10.9	K ⁺	4.0
HCO ₃	69.8	Cl¯	124
NO ₃	5.2	SO ₄ ²⁻	43.0
рН	8.15	¹ CEC	1.5
T (°C)	14	2 Kd _{Sr}	5.0

 $^{^{1}}$ (meq 100 g $^{-1}$) 2 (mL g $^{-1}$)

- 6.67 liter total volume (15% porosity)
- 1 liter (1 kg) of water
- 5.67 liter (15.3 kg) of geomedia (CEC only reactivity)
- 2.70 kg liter⁻¹ (grain density)
 2.29 kg liter⁻¹ (bulk density)
- React 2 mmoles aqueous urea
- Kinetics
 - 1st order for urea hydrolysis
 - 2nd order chemical affinity for calcite precipitation
- Geochemist's Workbench simulations

Kinetic Model Urea Hydrolysis

 $H_2NCONH_2 + 3H_2O \square 2NH_4^+ + CO_3^{2-} + OH^-$

$$\frac{d\left[urea\right]_{otal}}{dt} = \left[k_{urea}\right[urea]$$

$$\frac{d\left[NH_{4}^{+}\right]_{otal}}{dt} = 2k_{urea}\left[urea\right]$$

$$\frac{d\left[CO_{3}^{2\Box}\right]_{otal}}{dt} = k_{urea}\left[urea\right]$$

Kinetic ModelCalcite Precipitation

$$CaCO_3 \square Ca^{2+} + CO_3^{2-}$$

$$\frac{d[calcite]}{dt} = k_{calcite} (S \square 1)^2$$

$$S = \frac{Q}{K} = \frac{\alpha_{Ca^{2+}} \alpha_{CO_3^{2\square}}}{K_{eq}}$$

NETPATH model of McLing (1994) suggests that ~0.3 mmole (net) of calcite precipitate per liter of groundwater as it travels across the INEEL site (~50 years)

 $S \rightarrow 2.2$

Batch System Calculations (No Transport)

- pH and HCO₃⁻ initially rises due to urea hydrolysis, then decrease as calcite precipitates.
- Ca²⁺ initially rises due to exchange with NH₄⁺, then decrease as calcite precipitates.

Batch System Calculations (No Transport)

- Hydrolysis of 2 mmol urea results in precipitation of almost 2 mmole of calcite.
- Q/K rises rapidly as urea hydrolyzes faster than calcite precipitates,
 Q/K falls as the two rates become equivalent.

Reactive Transport

(6 month injection, 1-D, 730 m, 1 pore volume year-1)

- High pH moves through system. Near ambient pH values return in less than 18 months
- High [Ca²⁺] moves through system in early times as NH₄⁺ exchanges for Ca²⁺. During later times low [Ca²⁺] moves through system as Ca²⁺ exchanges for NH₄⁺

Reactive Transport

(6 month injection, 1-D, 730 m, 1 pore volume year-1)

- Calcite precipitates through the entire regions and is essentially complete within 2 years.
- Q/K is elevated (> 30) during early times and slightly depressed (but > 1) during later times. This condition persists until NH₄⁺ is swept from the system (decades).

Summary of Results

- Urea hydrolysis can be used to manipulate in situ biogeochemistry and facilitate calcite precipitation
- Process optimization is a trade off between rapidly precipitating calcite (high urea injection concentrations) and long-term calcite stability (low urea injection concentration)

Couple Process Modeling Implications

- Results from batch and advective simulation differ
- Calcite precipitation and biomass development can influence flow field (Is this predicable?)
- Over long time frames process other than cation exchange may become important (e.g., rock weathering?)
- Over long time frames ammonium oxidation may be important (e.g. controlled by O₂ flux?)

Coupled Processes Experimental Implications

- Field demonstrations are important, but not a good place to develop fundamental understanding.
 - Expensive
 - In situ monitoring of chemical parameters is limited
 - Hard to control
 - Impractical to replicate
- Well-controlled and monitored couple process experiments needed to parameterize models

